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PROPOSED IM POWERED-DESCENT TRAJECTORY
FOR THE AFOLLO LUNAR LANDING MISSION
By Willis M. Bolt snd Floyd V. Bennett

SUMMARY AND INTRODUCTION

A preliminary IM powered-descent trejectory reported in reference 1
hes been used for the pest year as the nominal descent trajectory for
the Apollo lunar landing mission. This trajectory profile wes based
pertly on guidance and targeting developed by MIT/IL and pertly on en
unguided landing phese which satisfies constreints for pilot control as
specified in reference 2. Recently the constraints during the finsl
approach and landing phases were modified as reported in reference 3.
Furthermore, a change in the descent initietion (engine ignition)
algorithm suggested in reference 4 has recently been incorporated into
the MIT/IL guidance logic. Thus, a study was undertaken by MPAD to
determine new targeting parsmeters to provide a complete guided descent
maneuver to be competible with the new constraints and new ignition
logic, This study was reported in reference 5. The purpose of this
report is to present the trajectory characteristics for a IM powered-
descent maneuver selected from the study in reference 5 end propose
that this trajectory be used for mission planning studies ss the new
nominal trajectory for the Apollo lunar landing mission. '

DEFINITION OF THE POWERED-DESCENT MANEUVER

Operational FPhases

The IM powered-descent trajectory 1s initiated at pericynthion of -
a 50 000-ft by 80-n. mi. descent transfer orbit. The powered descent
congists of three operational phases - breking, finsl approech, and
lending. The braking phase, initieted et pericynthion, is designed for
efficient reduction of the orbital velocity and terminates at a posi-
tion termed hi.gate, which is at approximately 9000-ft altitude. The
finsl approach phase, beginning at hi-gate, is designed to allow for
pilot visual (out-the-window) asssessment of the landing area end for
abort safety. This phase terminates at a position termed lo-gate,



which is at approximately 500-ft altitude. The lending phase, beginning
at lo-gate, 18 designed to provide the crew with detalled visuel essess-
ment of the landing srea and to provide compatibility for pilot take-
over from the automatic control. This phese includes a slow vertical
descent from approximately 65 ft end terminates at touchdown on the
surface.

Guidance and Tergeting

The automatic guldance logic is besed on quadratic acceleration
for the predominent portion of the descent. During the breking phase
the quadratic guldance 1s tergeted to the hi-gate state wvector. Linear
guidance is used when time-to-go (Tgo) is less then 20 seconds. A
short L-second transition period of linear guidence is used to achieve
the desired attitude for beginning the final approach phase. After
achieving hi-gate the quadratic guidance is targeted to a state vector
for beginning verticel descent. Agaln, linear guidence 1is utilized
when Tgo approsches O (less than 10 seconds) and is utilized for a
short k-second transition to schieve the vertical attitude descent.
The guidance for the vertical descent is a velocity nulling technique
for maintaining a constant descent rate, A complete description of
the descent guldence is given in reference 6.

DESCRIPTION OF PROPOSED TRAJECTORY

The proposed descent trajectory is based on the IM systems and
spacecraft cheracteristics defined in reference 7. The guldance ter-
get vectors are given in table I, Time histories of the trajectory
characteristics, thrust profile, and guidence commands for the entire
descent are given in figure 1. The visibility engle shown in pert (c)
of figure 1 1s the included angle between the X-body axis and the vector
from the vehicle to the current landing site. The sltitude-range profile
for the entire descent is shown in figure 2. The variation of altitude-
rate with altitude is 1llustrated in figure 3 for the entire descent.
Enlargements of the time histories of the trajectory charascteristice
and guidance commands for the final approach and landing phases are
1llustrated in figure L.

The constraints for pilot control during the lending phase have
been defined in reference 3 as & function of range to the landing site.
In figure 5, the characteristics of the proposed trajectory during the




landing phase are presented in the seme renge formet for purposes of
comparison with the constraints in reference 3. It can be seen from
this figure that the trajectory charecteristics are within (less than
or equal to) the constraint boundsries throughout the descent phese.
The time scales represent the time-to-go to the transition to vertical
attitude,

The AV and propellsnt requirements for the descent trajectory are
tebulated in table II for each operational phase. The total AV is
6706 £ps which is within the nominal budgeted allowance of reference 8.

CONCLUDING REMARKS

A IM powered-descent trajectory for lunar lending has been presented
which satisfies the current operational constraints. It 1s proposed
thet this trajectory be used in engineering simulations as the new nom-
inal trajectory for the Apollo luner landing mission.



TABLE I.- GUIDANCE TARGET VECTORS FOR IM POWERED DESCENT

Descent phases
Aim conditions Mransition nal spproach TTanaltion
Ignition | Trim | Breking to hi-gate and landing to verticel
Position
(L-frame ):
X, £t 5 711 987 |5 711 347 5 702 k72 S5 702 460
Y, ft 0 0 0 0
z, £t 1 559 654 =33 077 -30 892 -1.733 o
Velocity.
(G-frame ):
X, fps -159.3 -158. 4 -3.1 <3.0
Y, fps 0 ) 0 0
Z, fps 561.3 - 532,6 L3 (o}
Accelerastion
(G-frameb):
X, ft/sec’ ~1.454 1.915 .05 0
Y, ft/sec2 0 0 o]
2, ft/sect 8301  -6.075 .65 0
Jerk b
(G-freme"):
Z, tt/sec” -.009829 0 .034336 )
Nominal time
for phese, sec 26 467 b 158 b

®The L-freme coordinete system has its origin et the center of the moon; the X axis continuously
plerces the initial lending site, the Y axis is perpendicular to the IM landing trajectory at
the end of the visibility phese, and the Z axis completes the right-hend system.

b'I'he G-freme coordinate system hes its origin et the current landing site; the positive X axis
is from the center of the moon to the current landing site, the positive Y axis is nomal to
the trajectory plene et the time of arrival at the aim point, end the Z axis completes the
right-hand system.




TABLE II.- AV AND FROFELLANT REQUIRED FOR

NOMINAL IM POWERED DESCENT

[Nominal total AV allowed

AV, fps:

Breking phese . . .+ .
Final approach phase
Landing phase ., . . &
Vertical descent . .
Tot.l [ ] L] L L] L ] L] [ ] L ]

Propellant, lb:

Br.king phase . . .
Final approach phase
I‘nding ph‘ae * 0 o
Vertical descent . .
Tot'l L] L L[] * L) [ ] L] L]

- - - * -

* e ®» o o

6739 fps]

* L) L] L] )

L] ] L [ *

* L] Ll L] L)

*» & ® o &

5 362
861
305

6 609

13 817
1621
337
139
16 115
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Figure 1. - LM lunar descent total trajectory.
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Figure 5. - Landing phase trajectory characteristics and constraints.
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